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Non-standard interactions in oscillation experiments The general formalism

The general formalism

“New physics” often leaves low-energy fingerprints in the form of
effective, non-standard 4-fermion interactions (NSI).
⇒ Modification of weak interaction Lagrangian

NSI can affect neutrino production, propagation, and detection
Grossman PL B359 (1995) 141
Wolfenstein PR D17 (1978) 2369, Valle PL B199 (1987) 432, Guzzo Masiero Petcov PL B260 (1991) 154, Roulet PR D44 (1991) R935, etc.

Lagrangian:

LNSI =
GF√

2

∑
f,f ′

ε̃s,f,f ′

αβ

[
ν̄βγρ(1− γ5)`α

][
f̄ ′γρ(1− γ5)f

]
+

GF√
2

∑
f

ε̃m,f
αβ

[
ν̄αγρ(1− γ5)νβ

][
f̄γρ(1− γ5)f

]
+ h.c.,

Lorentz structures different from (V −A)(V −A) are possible, but not
considered in this talk.
see e.g. JK Lindner Ota Sato, arxiv:0708:152 for a discussion of NSI with non-(V − A)(V − A) Lorentz structure.

We will focus on NSI in the propagation (NC NSI) in the following.
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Non-standard interactions in oscillation experiments The general formalism

NSI in oscillation experiments

Compared to charged lepton flavour violation experiments: Interference
between standard and non-standard amplitudes is possible
⇒ NSI effects suppressed only by |ε| instead of |ε|2.
Grossman 1995, Wolfenstein 1977, Valle 1987, Guzzo 1991, Roulet 1991, Bergmann 1999, Gago 2001.

Possible consequences in oscillation experiments:

Poor quality of standard oscillation fit (⇒ Detection of NSI possible)
Offset: Wrong reconstruction of neutrino mixing parameters
Mismatch between standard oscillation fits to different experiments
Different optimization strategy
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Non-standard interactions in oscillation experiments NSI in a neutrino factory

NSI in the NF appearance channel

µ+ νe
∼ 1

θ13

θ13

νe

νµ

ντ

1 + εm
ee

εm
eµ

εm
eτ

εm
eµ 1 + εm

µµ

εm
µτ

εm
eτ

εm
µτ

1 + εm
ττ

νe

νµ

ντ

θ13

θ23

θ23

νµ µ−

Standard path (suppressed by θ13): µ+ → νe
θ13−−→ νµ → µ−

Assume ε ∼ θ13

NSI paths with same level of suppression as standard path:

µ+ → νe

εm
eµ−−→ νµ → µ−

µ+ → νe
εm

eτ−−→ ντ
θ23−−→ νµ → µ−
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Non-standard interactions in oscillation experiments NSI in a neutrino factory

NSI in the NF disappearance channel
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Non-standard interactions in oscillation experiments NSI in a neutrino factory

Classification of NSI in a neutrino factory

Relevant NSI in appearance channel: εm
eµ, εm

eτ

Relevant NSI in disappearance channel: εm
µµ, εm

ττ , εm
µτ

Combination of appearance and disappearance channels provides a
handle on all εm parameters except εm

ee (which is special anyway, being
intimately correlated with the standard matter potential).
Already at this level, one can see that the Silver channel is not needed to
detect NSI.
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Non-standard interactions in oscillation experiments NSI in a neutrino factory

Relevant oscillation channels for εm
eτ and εm

ττ sensitivity
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Non-standard interactions in oscillation experiments NSI in a neutrino factory

Further restrictions

εm
ee: Effect equivalent to systematically biased matter density

εm
eµ: Strong existing bounds from charged LFV (εm

eµ < 5× 10−4)
Davidson Pena-Garay Rius Santamaria JHEP 03 (2003) 011

εm
µµ: effect very similar to εm

ττ

 Most interesting

εm
eτ

εm
µτ

εm
ττ
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Non-standard interactions in oscillation experiments NSI in a neutrino factory

Classification of NSI in a neutrino factory — Summary

For the NF optimization, we need to consider only εm
eτ , εm

µτ , and εm
ττ .

We expect:
The Golden channel will be sensitive to εm

eτ .
The Silver channel will be sensitive to εm

eτ , but will not be needed.
The disappearance channel will be sensitive to εm

µτ and εm
ττ .
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Non-standard interactions in oscillation experiments Analytical treatment of NSI in a neutrino factory

Modified neutrino oscillation probabilities

Standard oscillations

Pνα→νβ
= |〈νβ |e−iHL|να〉|2

Oscillations with neutral current NSI

Pνs
α→νd

β
= |〈νβ |e−i(H+VNSI)L|να〉|2

VNSI =
√

2GF Ne

 εm
ee εm

eµ εm
eτ

εm∗
eµ εm

µµ εm
µτ

εm∗
eτ εm∗

µτ εm
ττ



J. Kopp (MPI Heidelberg) Optimization of a NF for NSI June 2008



Non-standard interactions in oscillation experiments Analytical treatment of NSI in a neutrino factory

Modified neutrino oscillation probabilities

Standard oscillations

Pνα→νβ
= |〈νβ |e−iHL|να〉|2

Oscillations with neutral current NSI

Pνs
α→νd

β
= |〈νβ |e−i(H+VNSI)L|να〉|2

VNSI =
√

2GF Ne

 εm
ee εm

eµ εm
eτ

εm∗
eµ εm

µµ εm
µτ

εm∗
eτ εm∗

µτ εm
ττ



J. Kopp (MPI Heidelberg) Optimization of a NF for NSI June 2008



Non-standard interactions in oscillation experiments Analytical treatment of NSI in a neutrino factory

Analytic expression for Peµ including |εm
eτ |

P NSI
eµ ' P SO

eµ − 2 |εm
eτ | sin 2θ13 sin 2θ23 s23 sin(δCP + φm

eτ )FMB FRes sin∆

− 2 |εm
eτ | sin 2θ13 sin 2θ23 s23 cos(δCP + φm

eτ )FMB FRes cos∆

+ 4 |εm
eτ | sin 2θ13 c23 s2

23 cos(δCP + φm
eτ ) Â

`
FRes´2

− 2 |εm
eτ |α sin 2θ12 sin 2θ23 c23 sin φm

eτ FMB FRes sin∆

+ 2 |εm
eτ |α sin 2θ12 sin 2θ23 c23 cos φm

eτ FMB FRes cos∆

− 4 |εm
eτ |α sin 2θ12 s23 c2

23 cos φm
eτ

1

Â

`
FMB´2

+ 4 |εm
eτ |2 c2

23 s2
23 Â2 `

FRes´2

− 2 |εm
eτ |2 sin2 2θ23 ÂFMB FRes cos∆

+ 4 |εm
eτ |2 s2

23c
2
23

`
FMB´2

.

Â ≡ ±aCC/∆m
2
31 = ±2

√
2EGF Ne/∆m

2
31, Matter potential

∆ ≡ ∆m
2
31L/4E , Vacuum oscillation phase

FRes≡ sin[(1 − Â)∆]/(1 − Â) , Maximal at matter resonance

FMB≡ sin(Â∆) = sin

„
± GF√

2
NeL

«
. Vanishes at magic baseline
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Non-standard interactions in oscillation experiments Analytical treatment of NSI in a neutrino factory

Analytic expressions for Peµ and Peτ including |εm
eτ |

„
P NSI

eµ

P NSI
eτ

«
'

„
P SO

eµ

P SO
eτ

«
∓ 2 |εm

eτ | sin 2θ13 sin 2θ23 s23 sin(δCP + φm
eτ )FMB FRes sin∆

∓ 2 |εm
eτ | sin 2θ13 sin 2θ23 s23 cos(δCP + φm

eτ )FMB FRes cos∆

+ 4 |εm
eτ | sin 2θ13 c23

„
s2

23

c2
23

«
cos(δCP + φm

eτ ) Â
`
FRes´2

∓ 2 |εm
eτ |α sin 2θ12 sin 2θ23 c23 sin φm

eτ FMB FRes sin∆

± 2 |εm
eτ |α sin 2θ12 sin 2θ23 c23 cos φm

eτ FMB FRes cos∆

− 4 |εm
eτ |α sin 2θ12 s23

„
c2
23

s2
23

«
cos φm

eτ
1

Â

`
FMB´2

+ 4 |εm
eτ |2 c2

23

„
s2

23

c2
23

«
Â2 `

FRes´2

∓ 2 |εm
eτ |2 sin2 2θ23 ÂFMB FRes cos∆

+ 4 |εm
eτ |2 s2

23

„
c2
23

s2
23

« `
FMB´2

.

Strong correlations, even at magic baseline
φm

eτ can yield CP violation even for θ13 = 0.
For θ23 = π/4, Peµ and Peτ differ only in the signs of certain terms.
For θ23 = π/4, Peµ and Peτ are identical at the magic baseline.
(⇒ Silver channel at magic baseline would be useless.)
. . .
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2 sin2 2θ23 ÂFMB FRes cos ∆

+ 4 |εm
eτ |

2
s
2
23

 
c2
23

s2
23

! `
FMB´2

.

Strong correlations, even at magic baseline
φm

eτ can yield CP violation even for θ13 = 0.
For θ23 = π/4, Peµ and Peτ differ only in the signs of certain terms.

For θ23 = π/4, Peµ and Peτ are identical at the magic baseline.
(⇒ Silver channel at magic baseline would be useless.)
. . .

J. Kopp (MPI Heidelberg) Optimization of a NF for NSI June 2008



Non-standard interactions in oscillation experiments Analytical treatment of NSI in a neutrino factory

Analytic expressions for Peµ and Peτ including |εm
eτ |

 
P NSI

eµ

P NSI
eτ

!
'
 

P SO
eµ

P SO
eτ

!
∓ 2 |εm

eτ | sin 2θ13 sin 2θ23 s23 sin(δCP + φ
m
eτ )FMB FRes sin ∆

∓ 2 |εm
eτ | sin 2θ13 sin 2θ23 s23 cos(δCP + φ

m
eτ )FMB FRes cos ∆

+ 4 |εm
eτ | sin 2θ13 c23

 
s2
23

c2
23

!
cos(δCP + φ

m
eτ ) Â
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Optimization of a neutrino factory in the presence of NSI Simulation details

Numerical simulation techniques

All simulations have been performed with GLoBES 3.0
Huber Lindner Winter Comput. Phys. Commun. 167 (2005) 195,
Huber JK Lindner Rolinec Winter Comput. Phys. Commun. 177 (2007) 432
http://www.mpi-hd.mpg.de/∼globes

Event rate based simulations (no Monte Carlo)
χ2 analysis includes

Systematical errors
Parameter correlations
Degeneracies
External input on those parameters which cannot be determined by the
experiment under consideration
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Optimization of a neutrino factory in the presence of NSI Simulation details

Neutrino factory setup (IDS-NF 1.0 baseline)

Two 50 kt magnetized iron detectors @ L1 = 4000 km, L2 = 7500 km.

Optional 10 kt silver channel detector (emulsion cloud chamber)
Hypothetical Silver* detector (signal ×5, background ×3) incorporates
hadronic τ decay channels
2.5× 1021 useful muon decays per baseline and polarity
Muon energy: Eµ = 25 GeV
Golden (νe → νµ), Silver (νe → ντ ), and Disappearance (ν̄µ → ν̄µ)
channels simulated
Charge ID in Golden and Silver channels, but not in disappearance
channel
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Conclusion: Silver channel only useful at L = 4000 km and Eµ � 25 GeV.
⇒ We can omit the Silver channel in the rest of our discussion.
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Performance indicators:

sin2 2θ13 sensitivity:
What is the new
exclusion limit if
θtrue
13 = 0?

Normal MH/max. CPV
sensitivity: How large
does sin2 2θ13 have to be
to guarantee detection
of NH/max. CPV?

Conclusion:
L1 = 4000 km, L2 = 7500 km
is close to optimal even if
NSI are included in the fit.
(We checked this also for the
other εm

αβ)

J. Kopp (MPI Heidelberg) Optimization of a NF for NSI June 2008



Optimization of a neutrino factory in the presence of NSI Optimization of baselines

Optimization of baselines for θ13, MH, CPV

2000 4000 6000 8000 10 000 12 000

2000

4000

6000

8000

10 000

12 000

L1 @kmD

L
2
@k

m
D

sin2 2Θ13 sensitivity

Sym
metr

y ax
is

Magic baseline

GLoBES 2008

æ

æ

ìì

ì

EΜ = 25 GeV

sin2 2Θ13 < 10-3.4

Standard Fit

sin2 2Θ13 < 10-3.2

Fit including ΕeΤ
m

2000 4000 6000 8000 10 000 12 000

2000

4000

6000

8000

10 000

12 000

L1 @kmD

L
2
@k

m
D

Normal MH sensitivity Hfor ∆CP
true = 3Π�2L

Sym
metr

y ax
is

Magic baseline

GLoBES 2008

æ

æ

ì

ì

ì

ì

EΜ = 25 GeV

Discovery for sin2 2Θ13 > 10-3.8

Standard Fit

Discovery for sin2 2Θ13 > 10-3.6

Fit including ΕeΤ
m

2000 4000 6000 8000 10 000 12 000

2000

4000

6000

8000

10 000

12 000

L1 @kmD

L
2
@k

m
D

Max. CPV sensitivity Hfor ∆CP
true = 3Π�2L

Sym
metr

y ax
is

Magic baseline

GLoBES 2008

æ

æ

ì

ì

ì

ì

EΜ = 25 GeV

Discovery for sin2 2Θ13 > 10-3.8

Standard Fit

Discovery for sin2 2Θ13 > 10-3.2

Fit including ΕeΤ
m

2000 4000 6000 8000 10 000 12 000

2000

4000

6000

8000

10 000

12 000

L1 @kmD

L
2
@k

m
D

All performance indicators

Core crossing

Sym
metr

y ax
is

Magic baseline

GLoBES 2008

æ

æ

EΜ = 25 GeV

JK Ota Winter arXiv:0804.2261

Performance indicators:

sin2 2θ13 sensitivity:
What is the new
exclusion limit if
θtrue
13 = 0?

Normal MH/max. CPV
sensitivity: How large
does sin2 2θ13 have to be
to guarantee detection
of NH/max. CPV?

Conclusion:
L1 = 4000 km, L2 = 7500 km
is close to optimal even if
NSI are included in the fit.
(We checked this also for the
other εm

αβ)

J. Kopp (MPI Heidelberg) Optimization of a NF for NSI June 2008



Optimization of a neutrino factory in the presence of NSI Optimization of baselines

Optimization of baselines for θ13, MH, CPV

2000 4000 6000 8000 10 000 12 000

2000

4000

6000

8000

10 000

12 000

L1 @kmD

L
2
@k

m
D

sin2 2Θ13 sensitivity

Sym
metr

y ax
is

Magic baseline

GLoBES 2008

æ

æ

ìì

ì

EΜ = 25 GeV

sin2 2Θ13 < 10-3.4

Standard Fit

sin2 2Θ13 < 10-3.2

Fit including ΕeΤ
m

2000 4000 6000 8000 10 000 12 000

2000

4000

6000

8000

10 000

12 000

L1 @kmD

L
2
@k

m
D

Normal MH sensitivity Hfor ∆CP
true = 3Π�2L

Sym
metr

y ax
is

Magic baseline

GLoBES 2008

æ

æ

ì

ì

ì

ì

EΜ = 25 GeV

Discovery for sin2 2Θ13 > 10-3.8

Standard Fit

Discovery for sin2 2Θ13 > 10-3.6

Fit including ΕeΤ
m

2000 4000 6000 8000 10 000 12 000

2000

4000

6000

8000

10 000

12 000

L1 @kmD

L
2
@k

m
D

Max. CPV sensitivity Hfor ∆CP
true = 3Π�2L

Sym
metr

y ax
is

Magic baseline

GLoBES 2008

æ

æ

ì

ì

ì

ì

EΜ = 25 GeV

Discovery for sin2 2Θ13 > 10-3.8

Standard Fit

Discovery for sin2 2Θ13 > 10-3.2

Fit including ΕeΤ
m

2000 4000 6000 8000 10 000 12 000

2000

4000

6000

8000

10 000

12 000

L1 @kmD

L
2
@k

m
D

All performance indicators

Core crossing

Sym
metr

y ax
is

Magic baseline

GLoBES 2008

æ

æ

EΜ = 25 GeV

JK Ota Winter arXiv:0804.2261

Performance indicators:
sin2 2θ13 sensitivity:
What is the new
exclusion limit if
θtrue
13 = 0?

Normal MH/max. CPV
sensitivity: How large
does sin2 2θ13 have to be
to guarantee detection
of NH/max. CPV?

Conclusion:
L1 = 4000 km, L2 = 7500 km
is close to optimal even if
NSI are included in the fit.
(We checked this also for the
other εm

αβ)

J. Kopp (MPI Heidelberg) Optimization of a NF for NSI June 2008



Optimization of a neutrino factory in the presence of NSI Optimization of baselines

Optimization of baselines for θ13, MH, CPV

2000 4000 6000 8000 10 000 12 000

2000

4000

6000

8000

10 000

12 000

L1 @kmD

L
2
@k

m
D

sin2 2Θ13 sensitivity

Sym
metr

y ax
is

Magic baseline

GLoBES 2008

æ

æ

ìì

ì

EΜ = 25 GeV

sin2 2Θ13 < 10-3.4

Standard Fit

sin2 2Θ13 < 10-3.2

Fit including ΕeΤ
m

2000 4000 6000 8000 10 000 12 000

2000

4000

6000

8000

10 000

12 000

L1 @kmD

L
2
@k

m
D

Normal MH sensitivity Hfor ∆CP
true = 3Π�2L

Sym
metr

y ax
is

Magic baseline

GLoBES 2008

æ

æ

ì

ì

ì

ì

EΜ = 25 GeV

Discovery for sin2 2Θ13 > 10-3.8

Standard Fit

Discovery for sin2 2Θ13 > 10-3.6

Fit including ΕeΤ
m

2000 4000 6000 8000 10 000 12 000

2000

4000

6000

8000

10 000

12 000

L1 @kmD

L
2
@k

m
D

Max. CPV sensitivity Hfor ∆CP
true = 3Π�2L

Sym
metr

y ax
is

Magic baseline

GLoBES 2008

æ

æ

ì

ì

ì

ì

EΜ = 25 GeV

Discovery for sin2 2Θ13 > 10-3.8

Standard Fit

Discovery for sin2 2Θ13 > 10-3.2

Fit including ΕeΤ
m

2000 4000 6000 8000 10 000 12 000

2000

4000

6000

8000

10 000

12 000

L1 @kmD

L
2
@k

m
D

All performance indicators

Core crossing

Sym
metr

y ax
is

Magic baseline

GLoBES 2008

æ

æ

EΜ = 25 GeV

JK Ota Winter arXiv:0804.2261

Performance indicators:
sin2 2θ13 sensitivity:
What is the new
exclusion limit if
θtrue
13 = 0?

Normal MH/max. CPV
sensitivity: How large
does sin2 2θ13 have to be
to guarantee detection
of NH/max. CPV?

Conclusion:
L1 = 4000 km, L2 = 7500 km
is close to optimal even if
NSI are included in the fit.
(We checked this also for the
other εm

αβ)

J. Kopp (MPI Heidelberg) Optimization of a NF for NSI June 2008



Optimization of a neutrino factory in the presence of NSI Optimization of baselines

Optimization of baselines for θ13, MH, CPV

2000 4000 6000 8000 10 000 12 000

2000

4000

6000

8000

10 000

12 000

L1 @kmD

L
2
@k

m
D

sin2 2Θ13 sensitivity

Sym
metr

y ax
is

Magic baseline

GLoBES 2008

æ

æ

ìì

ì

EΜ = 25 GeV

sin2 2Θ13 < 10-3.4

Standard Fit

sin2 2Θ13 < 10-3.2

Fit including ΕeΤ
m

2000 4000 6000 8000 10 000 12 000

2000

4000

6000

8000

10 000

12 000

L1 @kmD

L
2
@k

m
D

Normal MH sensitivity Hfor ∆CP
true = 3Π�2L

Sym
metr

y ax
is

Magic baseline

GLoBES 2008

æ

æ

ì

ì

ì

ì

EΜ = 25 GeV

Discovery for sin2 2Θ13 > 10-3.8

Standard Fit

Discovery for sin2 2Θ13 > 10-3.6

Fit including ΕeΤ
m

2000 4000 6000 8000 10 000 12 000

2000

4000

6000

8000

10 000

12 000

L1 @kmD

L
2
@k

m
D

Max. CPV sensitivity Hfor ∆CP
true = 3Π�2L

Sym
metr

y ax
is

Magic baseline

GLoBES 2008

æ

æ

ì

ì

ì

ì

EΜ = 25 GeV

Discovery for sin2 2Θ13 > 10-3.8

Standard Fit

Discovery for sin2 2Θ13 > 10-3.2

Fit including ΕeΤ
m

2000 4000 6000 8000 10 000 12 000

2000

4000

6000

8000

10 000

12 000

L1 @kmD

L
2
@k

m
D

All performance indicators

Core crossing

Sym
metr

y ax
is

Magic baseline

GLoBES 2008

æ

æ

EΜ = 25 GeV

JK Ota Winter arXiv:0804.2261

Performance indicators:
sin2 2θ13 sensitivity:
What is the new
exclusion limit if
θtrue
13 = 0?

Normal MH/max. CPV
sensitivity: How large
does sin2 2θ13 have to be
to guarantee detection
of NH/max. CPV?

Conclusion:
L1 = 4000 km, L2 = 7500 km
is close to optimal even if
NSI are included in the fit.

(We checked this also for the
other εm

αβ)

J. Kopp (MPI Heidelberg) Optimization of a NF for NSI June 2008



Optimization of a neutrino factory in the presence of NSI Optimization of baselines

Optimization of baselines for θ13, MH, CPV

2000 4000 6000 8000 10 000 12 000

2000

4000

6000

8000

10 000

12 000

L1 @kmD

L
2
@k

m
D

sin2 2Θ13 sensitivity

Sym
metr

y ax
is

Magic baseline

GLoBES 2008

æ

æ

ìì

ì

EΜ = 25 GeV

sin2 2Θ13 < 10-3.4

Standard Fit

sin2 2Θ13 < 10-3.2

Fit including ΕeΤ
m

2000 4000 6000 8000 10 000 12 000

2000

4000

6000

8000

10 000

12 000

L1 @kmD

L
2
@k

m
D

Normal MH sensitivity Hfor ∆CP
true = 3Π�2L

Sym
metr

y ax
is

Magic baseline

GLoBES 2008

æ

æ

ì

ì

ì

ì

EΜ = 25 GeV

Discovery for sin2 2Θ13 > 10-3.8

Standard Fit

Discovery for sin2 2Θ13 > 10-3.6

Fit including ΕeΤ
m

2000 4000 6000 8000 10 000 12 000

2000

4000

6000

8000

10 000

12 000

L1 @kmD

L
2
@k

m
D

Max. CPV sensitivity Hfor ∆CP
true = 3Π�2L

Sym
metr

y ax
is

Magic baseline

GLoBES 2008

æ

æ

ì

ì

ì

ì

EΜ = 25 GeV

Discovery for sin2 2Θ13 > 10-3.8

Standard Fit

Discovery for sin2 2Θ13 > 10-3.2

Fit including ΕeΤ
m

2000 4000 6000 8000 10 000 12 000

2000

4000

6000

8000

10 000

12 000

L1 @kmD

L
2
@k

m
D

All performance indicators

Core crossing

Sym
metr

y ax
is

Magic baseline

GLoBES 2008

æ

æ

EΜ = 25 GeV

JK Ota Winter arXiv:0804.2261

Performance indicators:
sin2 2θ13 sensitivity:
What is the new
exclusion limit if
θtrue
13 = 0?

Normal MH/max. CPV
sensitivity: How large
does sin2 2θ13 have to be
to guarantee detection
of NH/max. CPV?

Conclusion:
L1 = 4000 km, L2 = 7500 km
is close to optimal even if
NSI are included in the fit.
(We checked this also for the
other εm

αβ)

J. Kopp (MPI Heidelberg) Optimization of a NF for NSI June 2008



Optimization of a neutrino factory in the presence of NSI Optimization of baselines

Optimization of baselines for NSI

JK Ota Winter arXiv:0804.2261

L1 = 4000 km, L2 = 7500 km is OK for εm
eτ

For εm
µτ and εm

ττ , larger baselines are preferred.
Note: NSI sensitivity could be improved if longer baselines were
combined with higher Eµ.
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Qualitative arguments (NSI in source in detector)
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Standard path: N∗ → ν̄e → ν̄e → e+

NSI production processes: N∗ εs∗
ee−−→ ν̄e N∗ εs∗

eµ−−→ ν̄µ N∗ εs∗
eτ−−→ ν̄τ

NSI detection processes: ν̄e
εd∗

ee−−→ e+ ν̄µ

εd∗
µe−−→ e+ ν̄τ

εd∗
τe−−→ e+

ν̄e ↔ ν̄µ and ν̄e ↔ ν̄τ oscillations are suppressed by θ13.
Assume only one ε parameter is sizeable

N∗ εs∗
ee−−→ ν̄e → ν̄e → e+ O(ε) but: absorbed in flux uncertainty

N∗ → ν̄e → ν̄e
εd∗

ee−−→ e+ O(ε) but: absorbed in flux uncertainty

N∗ εs∗
eµ−−→ ν̄µ

sin θ13−−−→ ν̄e → e+ O(ε sin θ13)

N∗ εs∗
eτ−−→ ν̄τ

sin θ13−−−→ ν̄e → e+ O(ε sin θ13)

N∗ → ν̄e
sin θ13−−−→ ν̄µ

εd∗
µe−−→ e+ O(ε sin θ13)

N∗ → ν̄e
sin θ13−−−→ ν̄τ

εd∗
τe−−→ e+ O(ε sin θ13)
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Discovery reach for εm
eµ in a neutrino factory

Discovery reach for εm
eµ: Minimum value of |εm

eµ| which can no longer be
fitted with εm

eµ = 0 at a given C.L.

Very challenging due to strong constraint εm
eµ . 5× 10−4 (90% C.L.) from

charged lepton flavour violation. Davidson Pena-Garay Rius Santamaria JHEP 03 (2003) 011

Neutrino factory setup

Baseline 3000 km (1 detector only)
Detector: 50 kt magnetized iron calorimeter
Parent muon energy: 50 GeV
Stored muons: 4× 1021 µ+, 4× 1021 µ−
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Discovery reach for εm
eµ in a neutrino factory
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Discovery reach for εm
eµ in a neutrino factory
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eµ| too small

↓
χ2 of standard oscillation fit is
below 3σ for all true values of δCP

and arg εm
eµ.

0 50 100 150 200 250 300 350
∆CP

true @DegreesD

0

50

100

150

200

250

300

350

ar
g@
HΕ

eΜm
Lt

ru
e
D
@D

eg
re

es
D

1Σ

2Σ

3Σ

sin2 2Θ13
true=0.01

dof=2

ÈHΕeΜ
m Ltrue È=0.0005

J. Kopp (MPI Heidelberg) Optimization of a NF for NSI June 2008



Backup slides

Discovery reach for εm
eµ in a neutrino factory

|εm
eµ| = 0.5× 10−3

|εm
eµ| too small

↓
χ2 of standard oscillation fit is
below 3σ for all true values of δCP

and arg εm
eµ.
↓

No chance for discovery
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Discovery reach for εm
eµ in a neutrino factory
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eµ| = 0.6× 10−3

|εm
eµ| becomes larger

↓
For some combinations of δCP

and arg εm
eµ, the standard

oscillation fit becomes worse than
3σ (white islands appear).

↓
Discovery possible for favorable
phase combinations
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Discovery reach for εm
eµ in a neutrino factory

|εm
eµ| = 1× 10−3

|εm
eµ| becomes larger

↓
For some combinations of δCP

and arg εm
eµ, the standard

oscillation fit becomes worse than
3σ (white islands appear).

↓
Discovery possible for favorable
phase combinations
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Discovery reach for εm
eµ in a neutrino factory

|εm
eµ| = 2× 10−3

|εm
eµ| becomes larger

↓
For some combinations of δCP

and arg εm
eµ, the standard

oscillation fit becomes worse than
3σ (white islands appear).

↓
Discovery possible for favorable
phase combinations
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Discovery reach for εm
eµ in a neutrino factory
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|εm
eµ| becomes larger

↓
For some combinations of δCP

and arg εm
eµ, the standard

oscillation fit becomes worse than
3σ (white islands appear).

↓
Discovery possible for favorable
phase combinations
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Discovery reach for εm
eµ in a neutrino factory

|εm
eµ| = 5× 10−3

|εm
eµ| is large enough

↓
χ2 of standard oscillation fit
exceeds 3σ in the whole
parameter plane.

↓
Discovery is possible for any
phase combination
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Summary of the discovery reach for εm
eµ
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Summary of the discovery reach for εm
eµ
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do not have a large impact.
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Discovery reach for εm
eτ and εs

eµ in a neutrino factory
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